
Intelligent Ground Vehicle Competition 2009

TEAM MEMBERS

Allen Akroush, Gregory P. Czerniak, Nick Evans, Gierad Laput, Lisa Linna,
Anthony Lucente, Ross Marten, Jason Smith

Chapter 1

Design Report

1.1 Introduction

The University of Michigan - Dearborn presents Raptor, a contender for the 17th Annual Intelligent
Ground Vehicle Competition.

A ”varsity” group of students from the University of Michigan - Dearborn having at least
one year of IGVC experiennce were assigned to develop a fully autonomous ground vehicle to
compete in 2009. The team sought to reduce systems integration overhead by improving the
already-proven Raptor robot platform. Due to the Next-Generation Robot Platform (NGRP),
the modular software architecture developed in 2008, it was possible to continuously improve and
integrate new subsystems to Raptor’s software with an iterative design process.

1.2 Design Process

1.2.1 Competition Analysis

After Raptor competed in the 2008 IGVC, the team’s first action this year was to evaluate what
design improvements were necessary for better competition performance. The team’s main findings
were as follows:

• Raptor’s front casters were inadequate for overcoming rough terrain, as well as gaps such as
curbs or the beginnings of ramps.

• The GPS unit was mounted in front of a large metal pole, which restricted line-of-sight with
satellites.

• Systems integration was an afterthought rather than a major design criteria.

• Due to time constraints and an attempt to write a new code base, a lot of time was spent on
the new framework, and not enough was spent on the core path planning code.

1

• Time constraints forced the software developers to write the majority of the control into one
disorganized module instead of a logical data flow.

After some organizational and design introspection, the team decided that despite its flaws,
Raptor in 2008 was a suitably-stable unmanned vehicle. Therefore, instead of scrapping Raptor
and starting over, the team would continuously improve Raptor’s systems with innovations in 2008-
2009. To clearly indicate the team’s dedication to continuous improvement, the small light bulb
icon at the margin indicates that the paragraph contains an improvement to Raptor.

1.2.2 Team Formation

The team operated in a very flat, democratic structure. Meetings were held every week where team
members would present their newest work or findings. All members reached a consensus on major
design decisions before action took place, mirroring Japanese management techniques. That extra
collaboration and synergy resulted in better ideas, as well as preventing mistakes early in the design
process.

• Lead Autonomous and Navigation Challenge Developer: Gregory P. Czerniak, ECE Graduate

• Mixed Teleoperation/Autonomy Coordinator: Nick Evans, ECE Graduate

• Testing and Quality Control: Gierad Laput, ECE Graduate

• Vision System Developer: Jason Smith, ECE Master’s Student

• Camera System Developer: Lisa Linna, ECE Graduate

• Embedded Systems Developer: Anthony Lucente, ECE Graduate

• Contributing Developer: Allen Akroush, ECE Graduate

• Contributing Developer: Ross Marten, ECE Senior

1.2.3 Development Process and Systems Integration Plan

To highlight the continuous improvement philosophy of the Intelligent Systems Club, Raptor used
an iterative development process, and the team simplified systems integration by enforcing a con-
tinuous integration policy. In other words, features would be added to Raptor in iterations, and
the features would be integrated and tested into the larger system as soon as they were functional.
This afforded the team many benefits:

• Raptor was in a functional, ready-to-compete state at all times.

• Features were integrated one-at-a-time in an iterative development process. Testing was easier
since only one unproven component was in the system at any one time.

2

• By integrating systems throughout the design process, any design flaws in modules that would
complicate systems integration appeared gradually throughout the process instead of all at
the end.

�����������	

������ ���������	�
����� ��������	�	��

���	�� ���������	

Figure 1.1: A block diagram of the iterative design process.

1.3 Hardware

Raptor’s hardware was mostly purchased and integrated during last year’s competition. Since the
hardware performed extremely well last year, the team decided to make only minor modifications
to the hardware rather than an overhaul. By maintaining a stable hardware base, it was possible
to perform continuous software integration without questioning the reliability of the hardware.

Raptor was designed to be a 4-wheel motor vehicle equipped with differential steering and rear-
wheel independent suspension. It is constructed in two halves: a chassis welded with square steel
struts which housed all internal components, and an adjustable frame structure bolted above the
chassis to hold the 3-axis gimbal and the GPS.

As mentioned in the Competition Anaylsis section, the encolusre that encapsulated the GPS
base station caused the GPS system to malfunction. By removing the enclosure, the GPS system
was able to function correctly. This critical change was implemented into this year’s entry.

Raptor’s chassis was designed to provide easy-access to its internal controls such as the motor
controllers, batteries, emergency stop and power switches. The goal was to have a compact but
functional structure wherein the components can flow in a manageable arrangement. Wooden
door panels were constructed to provide easy access to the electronic components and the laptop.
Moreover, a steel casing equipped with a front access door was mounted on top of the chassis to
accomodate the payload. As an extra feature, two headlamps were mounted in front of the chassis
to aid the vision system by eliminating shadows and allowing night time control.

3

1.3.1 Electronics

Similar to the mechanical aspect of Raptor, no changes were made to the electrical and electronic
components from the previous year. Since the focus of 2009 was improving the software and
intelligent algorithms, electronic components such as the motor, motor controllers, and sensors
remained unchanged.

Power and Electrical System

Raptor was powered by two 12-volt 85 amp-hour marine deep cycle batteries connected in serires.
This provided 24 volt DC power accessible to all robot subsystems. For all other subsystems
needing a different voltage supply other than 24 volts, DC/DC converters rated at 24V-to-12V
and 24V-to-5V were used to supply power to subsystems requiring 12V and 5V respectively. This
configuration allowed flexible integration between modules with varying power requirements.

Motor

Raptor used widely-available wheelchair motors. The motors ran at approximately 140RPM with a
12.5-inch wheel, allowing Raptor to meet the IGVC speed requirements of 5mph. The two motors
were mounted on the left and right side of the robot and positioned directly opposite each other.
With a load of 60 in-lb, the motor ran at about 130RPM at 7.9A. It had a max rated torque of
120 in-lb with an output of 94RPM at 13.2A.

Motor Controller

The Roboteq AX2850 was the motor controller of choice because it is extremely easy to use and
it comes packaged with the neccessary features that allowed seemless integration with other sub-
systems. The controller was equipped with safety features such as the watchdog timer, and several
protection features to handle variations between voltage, current, and temperature. Its two chan-
nels operate independently which allowed precise control of the direction and speed of the robot.
Two 120A circuit breakers were placed on each channel to provide over-current protection.

Sensors

The robot acquired information from the outside environment through input sensors. These sensors
quantized critical information such as lanes, or distances of objects at a certain field of view. The
robot collected, combined, and calculated sensor information and decided the appropriate action
at any given moment. These sensors provided the robot with the neccessary ”abilities” it needed
for different aspects of the competition. The list below summarizes the different sensors used in
Raptor and their corresponding functions:

• Odometery

– Quad Optical Encoders

4

• Vision

– Unibrain Fire-i Digital Camera

– Used to detect lanes and other obstacles

• Positioning

– Hemisphere VS-100 Deferential GPS

– Provided geospatial information used in the Navigation Challenge

• Orientation and Balance

– Memsense TriRate 3-axis Gyroscope

– Provided relative angular displacement information

– Allowed the robot to ”grasp” a sense of orientation

– Mainly used to stabilize the camera

• Accelerometer

– DE-ACCM3D 3-axis Buffered 3D Accelerometer

– Provided relative acceleration information

– Used in conjuction with the gryoscope to stabilize the camera

• Obstacle Avoidance

– SICK Laser Range Finder

– Provided 190 data points at a 190-degree field of view (1 degree resolution)

– At each specific angle, the SICK returned the distance of the closest object

– Used in autonomous mode to detect and avoid obstacles

1.3.2 Computers

For the choice of laptop computer, the following specifications were of main concern: fast proces-
sor, large memory, high-performance graphics card, availability of firewire port, and long battery
life. Although any computer running Windows OS would work, it was essential that it met the
aforementioned specifications to ensure fast processing and low-latency operation. A HP Pavillion
DV6700T was chosen since at the time of purchase in 2008, it was the best computer that met all
the requirements at the most ideal price. The specifications for the HP Pavilion DV6700T were as
follows:

• Processor: Intel Pentium Dual Core T2330 / 1.6 GHz

• Memory: 3 Gigabytes DDR II SDRAM

5

• Graphics Card: Geforce 8400M GS Graphics Card

• Battery: Lithium Ion Battery with 4 hours of Battery Life

• I/O Ports:

– 1x FireWire Port (IEEE 8394)

– 3x USB 2.0 Port

– 1x Ethernet Port

• Other Specs:

– Dimensions: 10 x 14 x 1.7 in

– Weight: 6.1 lbs

1.4 Software

1.4.1 Strategy

In 2008, the Next Generation Robot Platform (NGRP) framework was written as a software base
for Raptor. For this year’s competition, the team decided to improve NGRP rather than write a
new code base from scratch.

NGRP was originally written to run as a set of modules, each one running as a separate thread
of execution on the computer system. Unfortunately, as mentioned in the Competition Analysis
section, time constraints in 2008 forced the developers to create one monolithic module in order to
have a functional robot in time for competition. This created high coupling and low cohesion in
the software, which reduced readability and orthogonality.

The first task for the 2009 version of NGRP was to split the monolithic module into a series
of small, single-purpose modules connected in a pipeline. Figure 1.2 shows a data flow diagram of
this new pipelined AI approach.

1.4.2 Signal Processing

Vision

Raptor uses the Unibrain Fire-I web camera to capture images. This camera was selected for its
ease-of-use, reliable 30 frames/sec frame rate, image quality, and accessibility to hardware settings
such as the shutter speed. A polarizing filter was mounted in front of the lens to reduce glare.

A large portion of image processing is offloaded to the GPU using the NVidia Cg language. The
parallelized architecture of the GPU is particularly well-suited to pixel-neighborhood operations
such as noise removal, morphology, and edge detection. Raptor’s vision code also used the GPU for
local thresholding and moment of inertia operations, which are not typically possible in real time
using only the CPU.

6

��������������

�	�
���
����������
�

�������
������

��������
����

�����

���

���

�	���

�����

���	�����	
����	���

Figure 1.2: A data flow graph of NGRP. Blue arrows are UDP, red arrows are map data, black
arrows are differential drive commands, and purple arrows are artificial obstacles.

The Intel OpenCV library was used for CPU-based image processing.
Figure 1.3 shows the sequence of operations used to extract lane markings from the image.
The image is first convolved with a Gaussian kernel to remove noise. The lane markings are

white and are typically brighter than the grass, so the next step was to perform a binary threshold
that only allows the highest intensity pixels to pass through. A global threshold is determined by
computing a histogram for the image and finding the 95th percentile. Since shadows prevent some
regions of the image where there is a white line to meet the global threshold, Raptor also uses
local thresholding. The parallelized architecture of the GPU makes it possible to use a different
threshold for each pixel in the image without a significant loss in performance. The final threshold
value for each pixel is between the global and local thresholds. The overall strategy is to use the
proven reliability of global thresholding but to make local adjustments to this threshold in case
there are shadows.

Sometimes large groupings of pixels make it through the threshold stage when glare reflects
from a sand-trap or ramp. Raptor uses a moment of inertia operator to eliminate these large blobs.
The moment of inertia algorithm goes through every pixel and looks at its neighbors along the
major and minor axes. A value is calculated for each axis, similar to an inertial moment. This is
done repeatedly as the major and minor axes are rotated. If the moment of one axis is significantly
greater than the other, the pixel of interest is probably part of a line, so the algorithm allows
it to pass through. Otherwise, the pixel is rejected, since a ”blob”-like region typically has more
symmetric inertial moments along each axis. This is a computationally-intense process and requires
a GPU or other similar dedicated hardware for real-time applications.

Due to perspective, white lines often appear thicker at the bottom of the frame compared to
the top. The vision system divides the frame into 3 regions and performs increasing numbers of

7

Figure 1.3: Raptor’s computer vision pipeline.

morphological erosions toward the bottom of the frame. This also has the benefit of eliminating
small patches of dead grass that are often visible directly in front of the robot.

Finally, the code uses the OpenCV implementation of the Hough transform to extract lines
from the remaining image. The endpoints of the Hough lines are placed in UDP packets and read
by the Perception module.

Mapping

After signal processing, each component supplies a piece of the overall situation. However, the
fusion of this information into a map is greater than the sum of its parts. To perform mapping
duties, NGRP contains a module called Perception, which receives all incoming sensor information
and performs mathematical transforms to bring it all to a single point of reference (the map).

This may sound simple, but due to the fact that all sensors have error, it is actually a very
hard problem. The small errors in all sensor data compound on itself, and over time the map
becomes absolutely incomprehensible. To mitigate the problem of compounding errors, Perception

8

Figure 1.4: A simulated IGVC course and the real-time map of it produced by NGRP.

deliberately forgets map information after a period of time specified in the robot’s configuration
file. Since Autonomous Challenge courses are typically linear one-way paths, this forgetfulness is
an acceptable design tradeoff, as proven by extensive simulated and real-world testing.

1.4.3 Autonomous Path Planning

After NGRP generates a local map of the environment, the next task is to determine the robot’s
trajectory. To do this, the 2009 version of NGRP uses a pipelined approach, starting with a very
generalized direction vector and feeding it through a series of behavioral filters that make the
trajectory more and more specific to the immediate situation.

Long-term (GDV)

In the Autonomous Challenge, it is very common for robots to turn the wrong way on the course,
and Raptor was no exception in 2008. This is caused by control software that lacks knowledge of
the general direction that the robot should be headed. The Intelligent Systems Club terminology
for this direction is the General Direction Vector (GDV). The first step of the NGRP 2009 path
planning pipeline is a module that records and maintains the most current GDV.

To calculate the GDV, NGRP assumes that the robot will initially be pointed in an initially-
correct GDV at the start of an autonomous run. Since IGVC autonomous courses are not straight,
the GDV must change to account for turns. This is done by assuming that if the robot is going
straight on its own volition, the GDV should be changed to the robot’s current direction. This is
based on an assumption that if the robot is not turning, it is most likely on the right track. Both
simulator and real-world testing has repeatedly shown that this assumption is sufficient for the
majority of cases.

Although the GDV would theoretically always keep the robot in the correct direction, testing
has shown that sometimes it is not enough. To mitigate this, a line segment behind the robot

9

perpendicular to the GDV known as the Virtual Wall functions as a ”virtual obstacle” to prevent
the robot from turning around or moving to the wrong direction. When the GDV changes, the
Virtual Wall updates accordingly. This provides second layer of turnaround prevention on top of
the GDV.

Mid-term Planning (Macro)

After a General Direction Vector had been determined, the result is sent to a mid-range planner
known as Macro. The Macro algorithm is a sweep algorithm, which casts 180 rays from right to left
in front of the robot in a behavior similar to the SICK LIDAR, but using the full map information.
These lines are returned in the form of distances to the nearest obstacle. The 2008 version of
Raptor assumed that the direction of the line with the farthest distance was the direction the robot
should go. The problem with that approach was that it did not account for the general direction
the robot should be going.

GDV

Trajectory

Macro
(NGRP 2008)

GDV

Trajectory

eMacro
(NGRP 2009)

Figure 1.5: A comparison of Macro and eMacro.

Simply following the direction that leads to the farthest distance without taking the GDV into
account can result in the robot making fatal decisions such as going off course on dashed lines, as
Figure 1.5 shows. As a result, NGRP 2009 has a new version of Macro known as Enhanced Macro
(eMacro). Rather than simply using distance as the determining factor for direction, eMacro takes
the dot product of the GDV and each sweep line. This modification causes eMacro to go in the
direction that leads to the greatest forward distance toward the general direction vector.

10

Obstacle Avoidance (Dodge)

After Macro completes execution, the trajectory is fed into a module named Dodge. Dodge’s logic
is extremely simple: it simply turns away from the direction of the closest obstacle.

In the 2008 NGRP, Dodge’s effective range was unrestricted, which led to Raptor overreacting
to far-away obstacles. In the 2009 NGRP, Dodge’s influence is restricted to only obstacles one
meter away or less. This greatly improves the overall AI pipeline by only causing reactive behavior
when it is absolutely needed.

1.4.4 Navigation Challenge

Figure 1.6: A simulated instance of the Navigation Challenge on the left, and NGRP on the right.

The pipelined approach to writing NGRP made the design for the Navigation Challenge easier,
since the majority of the control pipeline could be reused. In order to implement the functionality
of the Navigation Challenge, a module was created that would read a list of GPS coordinates from
a file. The robot would then proceed to each waypoint in the same order as the list in the file.

After the inital loading procedure, the module would constantly do three things in an infinite
loop:

1. Check to see if the robot has reached the current waypoint.

2. If the robot has reached the waypoint, set the current waypoint to the next waypoint on the
list. If there are no remaining waypoints, stop.

3. If the robot has not reached the waypoint, set the General Direction Vector to the as-the-
crow-flies trajectory between the robot’s location and the waypoint.

11

1.4.5 Simulation

A major issue with testing pertains to the fact that multiple developers cannot simultaneously
access the robot. Moreover, evaluating the robot’s performance in an obstacle course requires
access to a large area. Setting up a large course (similar to the ones used in competition) is not
feasible.

Figure 1.7: A screenshot of the simulator.

Software simulation resolves these critical issues by providing a virtual testing environment
which can run on a computer equipped with Windows and a 3D-accelerated graphics card. Through
the use of software simulation, software changes are readily implemented and evaluated without
requiring any physical access to the robot. Furthermore, the simulator is capable of sending data
in exactly the same manner as the real sensor data.

The software simulator renders a virtual environment complete with obstacles that are com-
monly found in the competition such as lanes, barrels, and ramps. Furthermore, a program written
in conjuction with the software simulator provides the ability to easily design virtual courses. With
this feature, a course can be designed to evaluate the performance of a specific algorithm. This
was an improvement from the previous year where courses were designed by manually hardcoding
data points to the simulator.

1.5 Safety

The University of Michigan - Dearborn Intelligent Systems Club placed safety as its absolute highest
priority. The safety ramifications of major design decisions were discussed throughout the design
process.

The Intelligent Systems Club considered the safety requirements enumerated in the IGVC rules
to be a minimum baseline for physical safety, and Raptor met these standards. There was a
mechanical emergency stop on the rear of Raptor that functioned as an electrical switch to the

12

Figure 1.8: Screenshot of a program for designing simulation courses, and a screenshot of the course
in the simulator.

main power circuit, and would cut power to everything if the button was pressed. There was
also a wireless emergency stop effective to 50 feet that would cut electrical power to the vehicle
when engaged. In addition to the IGVC requirements, in order to use a manual controller to drive
the robot outside the autonomous modes, one had to hold down a dead-man’s button to prevent
accidental movement commands from causing crashes.

To suppliment the standard IGVC safety requirements, the software also contained many safety
features. The final module in any autonomous control pipeline on NGRP was called Safety, and
it contained several final sanity checks made to trajectories before they were sent to the motor
controller.

The first sanity check was a forward crash detector, which stopped Raptor if the robot was
being instructed to drive directly into an obstacle. In 2009, a sanity check was added for keeping
the robot from making turns into obstacles. Also, to prevent the robot from turning so fast that it
may not have been able to issue a corrective command in time to prevent a crash, there was a check
that placed upper bounds on the robot’s turning rate. These safety checks significantly reduced
the number of accidents that occurred during testing runs.

1.6 Performance and Cost Estimate

Tables 1.1 and 1.2 at the end of the paper contain the information for cost and performance
characteristics, respectively.

13

1.7 Conclusion

The University of Michigan - Dearborn Intelligent Systems Club believes that its approach to
the design of Raptor in 2009 will result in significantly higher performance in the 17th Annual
International Ground Vehicle Competition. By focusing on improving the existing stable Raptor
platform with minor modifications to the hardware, more time could be spent developing more
intelligent algorithms for path planning and navigation. Embracing an iterative design process
coupled with continuous integration resulted in a more stable platform throughout the product
lifecycle. The team spent approximately 2000 man-hours total on this project incorporating these
changes, and the team believes that Raptor will perform well in 2009.

1.8 Acknowledgements

The team would like to thank Larry Sieh for his help and support, as well as our many sponsors
for their invaluable financial and equipment donations.

1.9 Signature

I certify that the design and creation of Raptor has been significant and is equivalent to what might
be awarded credit in a senior design course.

Dr. Narasimhurthi Natarajan
Professor of the Department of Electrical and Computer Engineering, University of Michigan -
Dearborn

Date

14

Description Actual Cost Cost To Team

Chassis Construction / Mechanical Design

1 Square Metal Tubing and Wood Panels 288.50 288.50

4 Electric Wheelchair Wheels 12.5 Wheel 743.80 60.00

4 Wheelchiar Electric Motors 1,864.00 240.00

2 Two Ton Jacks 120.00 120.00

4 Shock absorbers (off-Go Kart, ATV, Mini Bike, Etc) 80.00 80.00

Motor Control Circuitry

1 Roboteq Motor Controller Ax2850 620.00 575.00

Robot Computer

1 Dell Laptop Computer 999.00 999.00

Microcontrollers

1 Camera Gimbal, Embedded Arm Board 332.00 332.00

Sensors

2 Wheel Encoders: Quad Optical Encoders, same ones as on WOLF 338.00 316.00

1 Sick Laser Sensor 5273.00 389.00

GPS

1 Hemisphere VS100 Series DGPS 4,195.00 0.00

Camera

1 Fire-i Digital Board Camera-Camera with Wide-Angle Lens 130.00 130.00

1 CopterWorks 3-Axis Gimbal - Pan, Tilt, Yaw 2,520.00 650.00

1 MEMsense 3-Axis Rate Gyroscope 810.00 0.00

1 3-Axis DE-ACCM3D Accelerometer 35.00 35.00

1 Servo Controller 39.95 39.95

1 Linear Actuators 109.00 109.00

1 Camera Enclosure 54.95 54.95

Controller Transmitter and Receiver

1 Wireless Emergency Stop Receiver 60.00 60.00

1 Wireless Emergency Stop Transmitter (1500 feet) 37.00 37.00

Accessories

2 Transcontinental Deep Cycle Batteries 12V 85AH 130.00 130.00

1 Multi-Bank Battery Charger: 5/5amp 2 Bank Charger 189.99 189.99

1 Mean Well USA, 24v to 12v DC/DC Converter 185.00 0.00

1 Mean Well USA, 24v to 5v DC/DC Converter 185.00 0.00

1 Exterior lights for eye catching appeal 100.00 100.00

1 Random Switches, Wires, Connectors, Electronic Parts, Enclosures, Etc 500.00 500.00

6% Sales Tax $1,196.34 $326.12

Total $21,135.34 $5,761.52

Table 1.1: The table of expenses for Raptor.

Attribute Design Prediction
Maximum Speed 5.0mph
Climbing Ability 30 degree ramp
Nominal Power Consumption (Watts = Amps x Volts) 500 watts
Battery Operating Time (24v 85AH Battery System) 4 hours
Distances at which objects can be detected 5.5 meters
Waypoint accuracy (DGPS) <60cm 95% of the time
Reaction Times 60-120 ms depending on configuration
How vehicle deals with complex obstacles Reactive Fuzzy Logic approach

Table 1.2: Performance attributes of the Raptor.

15

